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Abstract 

The theory of polarized X-ray diffraction in mosaic 
crystals, which takes into account multiple Bragg 
scattering, is developed in the framework of transfer 
equations for the polarization tensors of X-ray beams. 
Both the depolarization and differences in the phase 
velocities of polarized X-rays due to Bragg scattering in 
mosaic crystals are determined. Exact solutions of the 
equations are obtained for a plane-parallel plate and 
expressions for the polarization characteristics of 
reflected and transmitted beams are given for Bragg 
and Laue geometries. The approach developed may 
also be applied to neutron or M6ssbauer ),-ray 
diffraction in magnetically ordered mosaic crystals. 

Introduction 

Recent progress in the development of an experimental 
technique and, particularly, intense sources of highly 
polarized X-rays such as synchrotron radiation have 
attracted fresh attention to polarization measurements 
in X-ray diffraction (Skalicky & Malgrange, 1972; 
Jennings, 1968; Olekhnovich, Rubtsov & Shmidt, 
1975; Mikhajljuk, Kshevetskij, Ostapovich & 
Shafranjuk, 1977; Olekhnovich & Markovich, 1978; 
Vaillant, 1977; Cohen & Kuriyama, 1978; Hart, 1978). 
The earlier works were reviewed by Chandrasekhar 
(1960). The usefulness of such measurements is now 
doubtless and is connected with the possibility of 
obtaining new and more detailed information about 
structural properties of crystals. This is related to the 
diffraction both in perfect and in imperfect crystals, but 
in the latter case the potential advantage of the 
polarization measurements is restricted by the absence 
of a complete theory of polarization phenomena. 

The theory of X-ray polarization properties is well 
developed for the case of perfect crystals (Skalicky & 
Malgrange, 1972; Mikhajljuk et al., 1977; Cohen & 
Kuriyama, 1978; Hart, 1978) and is based on the 
dynamical theory of diffraction. It is clear that in the 
case of imperfect crystals the properties of X-ray beams 
are also determined by diffraction, but it is very difficult 
to use the dynamical equations directly. A simpler 
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description of definite types of imperfect crystals 
(mosaic crystals) was originally proposed by Darwin 
(1922) (see also Zachariasen, 1967; Becker, 1977). 
Darwin's approach is based on transfer equations for 
intensities of linearly (n and a) polarized beams (the 
plane of n polarization coincides with the plane formed 
by k 0 and kn, the wave vectors of the direct and 
diffracted waves respectively; cr polarization is 
perpendicular to n polarization). Note that the 
incoherence of scattering by individual blocks of a 
mosaic crystal is used in the derivation of these 
simplified equations. 

The present paper deals with the theory of arbitrarily 
polarized X-ray diffraction in mosaic crystals. It is well 
known (Chandrasekhar, 1950; Rozenberg, 1977) that 
for arbitrarily polarized radiation the transfer equations 
for intensities should be replaced by the transfer 
equations for polarization tensors J. The diagonal 
elements of a polarization tensor Joo and J ~  are the 
intensities of or- and n-polarized components of the 
X-ray beam and the off-diagonal elements Ja,~ = J* 

r t t7  

contain the product of the amplitudes of or- and 
x-polarized components. The physical meaning of Jo,~ is 
determined by the following relations: Im J,,, is equal to 
the intensity of the circularly polarized component and 
Re J is equal to the intensity of the linearly polarized 
component with the electric vector inclined at 45 ° to cr 
or n. The polarization tensor J determines the beam 
intensity and all polarization properties (the degree of 
polarization, the orientation and axial ratio of 
polarization ellipse); the well known Stokes's 
parameters are also determined by the tensor J (Born & 
Wolf, 1964). The solution of the transfer equations for 
polarization tensors therefore connects the intensity and 
polarization properties of the diffracted beam with 
those of the incident one. 

The transfer equations for polarization tensors are 
the straightforward generalization of transfer equations 
for intensities and are reduced to the latter if the 
incident beam is cr or n polarized (or unpolarized). If the 
incident beam polarization is neither o nor n, one needs 
the transfer equations for polarization tensors to 
describe the polarization properties of diffracted beams. 

There are various approaches to X-ray transfer 
equations in mosaic crystals (Darwin, 1922; 
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Zachariasen, 1967; Kato, 1976; Becker, 1977). The 
present paper deals with the simplest Darwin model of 
mosaic crystals. The sizes of mosaic blocks are 
supposed to be small enough that X-ray diffraction in 
the individual block may be described by kinematical 
theory. Under the mentioned assumptions, the transfer 
equations for polarization tensors may be derived in the 
same way as the transfer equations for intensities. The 
detailed derivation of the transfer equations for 
polarization tensors was discussed earlier both for the 
general case (Chandrasekhar, 1950) and for the case of 
Bragg diffraction (Dmitrienko & Belyakov, 1977). 

In the present paper it is found in the framework of 
the transfer equations of the polarization tensors that 
the qualitative difference in X-ray diffraction in perfect 
and mosaic crystals reveals itself in the depolarization 
of diffracted beams in mosaic crystals. A quantitative 
description of X-ray birefringence and other 
polarization phenomena in X-ray diffraction in mosaic 
crystals is given. 

Basic equations 

Let us examine the diffraction of polarized X-rays in a 
mosaic crystal. The mosaic crystal is assumed to be 
formed by a large number of small perfect blocks which 
are slightly misoriented one to the other. The typical 
angle of misorientation is supposed to be much larger 
than the angular width of diffraction in the individual 
block (type I mosaic crystal). As was mentioned, this 
model of an imperfect crystal permits the use of transfer 
equations for the description of X-ray diffraction. The 
straightforward generalization of the Darwin (1922) 
transfer equations for the case of arbitrarily polarized 
X-rays gives the following equations for the 
polarization tensors of direct jo and diffracted flu 
beams in a mosaic crystal. 

c~J0 
_ _  _ /aJo  + i ( a o  g2 jo _ a~ Jo RE)/2 + ao n i ? jn  g 
Bs o 
~ i "  (1) 

- -  - U ?  n + i ( a .  g2 j . _  anJ" R2)/2 + anogJ ° g 
tgSH 

where s o and sn are the coordinates along k o and kn = 
k o + H, the directions of the direct and the diffracted 
beams respectively, H is the reciprocal-lattice vector 
and # is the absorption coefficient. The tensor g" 
describes the polarization properties of diffraction in an 
individual block and is determined by 

where C is the polarization factor, C = cos 20 n, O n is 
the Bragg angle. Now we shall describe the coefficients 
ao, an, aon, ano in (1) and discuss the physical meaning 

of these equations. The coefficients an0 and aoH are 
determined, respectively, by the cross sections of the 

• Bragg scattering from the direct to the diffracted beam 
and vice versa. As in the Darwin equations, these 
coefficients are given by 

,~3 ( e2 12 
O.o(t) - si~--gO-_,_v B \~mc 2] IFHI2 W(t;), 

(3) 

o0.(e) - sin 20 B \ ~ ]  IF_.  12 W(e), 

where e = 0 -  0 B, the departure angle from Bragg's law, 
i is the wavelength, v is the volume of the unit cell, FH 
and F n are the structure amplitudes, W(e) is the 
orientational distribution function of blocks in the 
crystal, e, m and c are the physical constants in the 
conventional usage. Note that oH0 and a0n may be 
regarded as the averaged diffraction power of an 
individual block. 

The imaginary and real parts of the complex 
coefficients a 0 and aH are determined, respectively, by 
diffractional attenuation and birefringence in a mosaic 
crystal. These coefficients may be obtained in the same 
manner as a0H and OH0. They may be regarded as the 
averaged attenuation and birefringence of an individual 
block and are given by 

,~3 ( e2 12 
ao(e) - - -  FH F_H [ l~(e) + iW(e)] (4a) 

sin 20 B \ ~ 1  

all(e) -- - -  FH F-H I-- ~ (e )  + iW(e)] (4b) 
sin 20 B \ ~ ]  

where ff'(e) is connected with the distribution function 
W(e) by the following relation 

1 ~ W(e ')de '  
ffz(e) = -n e' - e  (5) 

--0(3 

Omitting the straightforward derivation of (4), we 
shall only show how (5) may be found from the well 
known Kramers-Kronig relations (dispersion relations). 
Taking into account that a o determines the diffractional 
part of the complex refractive index of X-rays in a 
mosaic crystal and making use of the Kramers-Kronig 
relations for the dielectric constant, one finds that Re a 0 
and Im a o are connected by the following dispersion 
relation (Landau & Lifshitz, 1958): 

1 ~ Im a0(w' )dw' 
Re o'0(o9) = - (6) 

R ~ 09 r --(.O 
-oo 

where 09 is the frequency. In (6), frequency variables 
may be changed by angular ones because the 
diffractional part of the refractive index is significant 
only if Bragg diffraction occurs. Taking into account 
that in the Bragg condition a frequency deviation Ao9 is 
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directly proportional to the angular deviation Ae, Ae = 
(Am~co) tan 0 B, one obtains the following relation from 
(6) to a good approximation: 

1 ~ lm ao(t:') de' 
Re ao(e) = - 2 e' (7) 

7l" - - e  
- o o  

Inserting (4) into (7) one can obtain (5). (For the sake 
of simplicity it may be assumed that F _ .  = F~.) Note 
that the minus sign at fie(e) in (4b) arises because in 
type I mosaic crystals the sign of angular departures 
from Bragg's law is opposite for direct and diffracted 
beams (originally pointed out by Darwin, 1922). Note 
also that for F . = F* equations (4) give the well 
known expressions for the coefficients in (1) 

Im o 0 = Im an = a0H = all0 = QW(e) ,  (8) 

where 

Q - sin 20-------~ v--,-,-,-,-,-,-,-~c 2 IF .  I 2. 

The function fie(e) contains the same information 
about block orientations as W(e) does. In the cases of 
Lorentzian and Gaussian mosaic distributions one 
obtains: 

WL(e) = (cml;'r)/(e 2 + e~). 

fie, (e)=-(e/n)/(e 2 + e~) ,  (8a) 

Wa(e) = (em V/-n) -l exp - (e /em)  2, 

fief(e)= ne2m ,z2"-0 (2n + 1)!! ' (8b) 

where e,, is the width of mosaic distribution. Note that 
fie(e) is an odd function if W(e) is an even function as 
is usually supposed. 

Let us discuss now the tensor properties of the 
coefficients in equations (1). Naturally, these properties 
are determined by the polarization properties of 
diffraction in individual mosaic blocks. Therefore, let us 
examine the diffraction of the arbitrarily polarized wave 
with the amplitude E = Eoa  + E n in the block. For 
the amplitude of the diffracted wave in the kinematical 
approximation one easily gets 

E a ~_ (Eo a + cos 20 n E,, n) = / ~ E  (9) 

where/~ is given by (2). If one takes into account that 
the polarization tensor of a plane wave is defined by the 
following relation 

J = \ E , , E *  IE, I 2] (10) 

the expression for the polarization tensor of the 
diffracted wave may be written in the form 

IE, I 2 E, ,E* cos 20hi yd~_ 
E* 20n IE,,12 cos 220,] - ~Jlz;" 

(11) 
E,, ° cos 

Thus, we obtain the tensor structure of the terms with 
the coefficients o0. and o.0 in equations (1). In the same 
way (Dmitrienko & Belyakov, 1977) one can get the 
tensor structure of the other terms in equations (1). 

Now tensor equations (1) can be rewritten as the 
following equations for the elements of the polarization 
tensors j0 and JH: 

", 0 
( J o o  

~iS o 
• ~ H 
C J a o  

m 

~!S H 

"" 0 c J,,,, 

~)s o 
? j  H 

C, SH 

", 0 
c Jo,, 

CSo 

,; H cJon 

(IS H 

- (u + Q w ) J ° ,  + QWJ~o (12a) 

(,u + QW)Jnoo + QWJ°o, (12b) 

(t~ + c 2 Qw)Jr,,~,, + C 2 QWJ°, ,  (13b) 

[/1+ (1 + c 2) Q W / 2  

+ i(1 - C 2) Qfie/2lJ°o,, + CQWJ~,,  (14a) 

I/u+ (1 + C 2) Q W / 2  

- i(1 - C 2) Qfie/2]J,,~ + CQWJ°o,,. (14b) 

The equations for J,o are omitted here because J,,o = 
j* .  

It follows from (12)-(14) that the equations for 
diagonal and off-diagonal elements are unconnected. 
Equations (12) and (13) for diagonal elements are the 
well known Darwin transfer equations. The new 
equations in the developed approach are only equations 
(14) for off-diagonal elements of polarization tensors. 
The solutions of (14) may be found in the same way as 
those of (12) and (13). The boundary conditions for 
off-diagonal elements are the same as for intensities: J,,, 
are continuous at the crystal boundaries. 

Note that some qualitative features of the diffraction 
of polarized X-rays in mosaic crystals can be found 
without solving (12)-(14). For example, it follows from 
(12)-(14) that the polarization properties of X-ray 
beams vary during their propagation in a mosaic 
crystal. This variation is an immediate consequence of 
the different coordinate dependences of the diagonal 
and off-diagonal elements of the polarization tensors, 
the relation between which determines the polarization 
properties of the beams. The less-evident consequence 
of (12)-(14) is the depolarization of X-rays in mosaic 
crystals. A more detailed discussion of these 
polarization properties will be presented below after the 
solution of ( 12)-(14) for some cases. 

(/u + C 2 QW)J° , ,  + C 2 QwJ~,,~,, (13a) 
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Diffraction in a mosaic plate 

Let us examine the diffraction of an arbitrarily 
polarized plane wave with the polarization tensor j i  in 
the plane-parallel mosaic plate. In this case j0 and jH 
are dependent on the z coordinate only (z axis is normal 
to the plate surface). After obvious substitutions 
(c~J°/~So) = 7o(d]°/ds) and (~]"/c~sH) = 7s(dJn/dz), 
one gets from (12)-(14) the ordinary linear differential 
equations (70 and 7n are the magnitudes of the direction 
cosines of the direct and diffracted beams relative to the 
normal to the crystal surface). Omitting here the simple 
solution of (12)-(14), let us give and analyze the final 
results only. 

For the off-diagonal elements of the polarization 
tensors fir and ] t  of the reflected and transmitted beams 
respectively, one can obtain from (14) the following 
expressions: 
in the Bragg case 

C Q W ( e x p  f i l  L - -  expg 2 L) j r  = j i  
o ' ~  a r e  

a 2 exp g~L - a I expg 2 L 

(a 2 - a l )  exp (,u I + g2)L j t  = j i  • (15) 
0 7 t  O f t  

a 2 exp/z~ L -- a] exp g2 L 

and in the Laue case 

CQW(exp  lu 2 L - exp #l L) 
j r  = j i  

0 2 - -  a~ 

a 2 exp ~/2 L -- a I exp gl L 
j t  =jio,, ," (16) 

a 2 - -  a 1 

where L is the plate thickness, J / i s  the off-diagonal 
element of the polarization tensor of the incident beam, 

aj = ~'n gj + g + (1 + C2)QW/2 + i(1 - C2)QITV/2, 

j =  1,2, 

#j are the roots of the characteristic equation of (14): 

)'0 )'n g 2 + {(~'0 + )'H)[g + (1 + C2)QW/2] 

+ i(~' o - ~,n)(1 - C2)Qff//Z}gj 

+ [g + ( I + C2)QW/2] 2 - C  2 Q2 W 2 

+ (1 - C2) 2 Q2 i~2/4 = 0. (17) 

Expressions (15) and (16), with the well known 
expressions for the diagonal elements, completely 
determine the intensity and polarization of reflected and 
transmitted beams in the case of a mosaic crystal. 

It should be remembered that the intensity and 
polarization characteristics of a beam are connected 
with the elements of its polarization tensor in the 
following ways: 
the intensity I 

I : J ° o  + J,,,,; (18) 

the degree of polarization P 

P = I ( J o , , - J , , , , )  2 +41Jo,,12l°"/(Joo + J  ); (19) 

the axial ratio b of the polarization ellipse 

b = tan r/, (20) 

where sin 2r /= 2 Im Jo,,/(PI); 
the angle (p between the long axis of the polarization 
ellipse and o direction 

t a n 2 t p = 2 R e J ~ , / ( J o o - J  ) (21) 

(Born & Wolf, 1964). 
Expressions (15)-(21) describe the dependence of 

polarization characteristics on the plate thickness, the 
angular departure from the Bragg law, the type of block 
distribution, etc. The most interesting result is the 
depolarization of reflected and transmitted beams: in 
the general case the degree of polarization of these 
beams is less than unity, even if the incident beam is 
completely polarized. This depolarization is caused by 
the combined action of the transformation of beam 
polarizations inside the crystal and the incoherence of 
diffraction in different blocks (it is well known that the 
summation of incoherent beams with different 
polarizations leads to a partially depolarized beam). 
Note that for o- or n-polarized beams the 
transformation of polarization is absent; thus, o- and 
n-polarized beams are not depolarized in mosaic 
crystals. 

The above expressions describe the differential (over 
the angle) characteristics of the beams. To obtain the 
integrated characteristics in (18)-(21) one has to use 
instead of J~k the corresponding elements )~k averaged 
over the angle of incidence, i.e. Jlk  = .Qoo J lk  de. 

The Bragg case 

In the general case, (15)-(16) are rather formidable 
after substitution of the expressions for the roots of 
(17). Therefore, it will be assumed below that the 
usual absorption exceeds the extinction, i.e. g >> Q W 
and/z >> Q ff'. We shall also assume that the mosaic 
plate is rather thick (so that gL >> 1). With these 
assumptions the expressions for the elements of the 
polarization tensor of the reflected beam in the Bragg 
case are 

j r  = QW),oJ~o/(7o_ )'.)(g + Q w ) ,  

J~,, = C2 QWToJ~, , / (7o-  7.)(g + C2 QW),  (22) 

j r , , =  C Q W y o j i / { ( y o _  yn)[g + (1 + C2)QW/2] 

+ i(y0 + 7 n ) ( 1 -  C2)Qff ' /2},  
i i i where Jo°, J,,,,, Jo,, are the elements of the polarization 

tensor of the incident beam. 
Note that for the asymmetric Bragg case (Tn 4= Y0) 

the reflected beam is slightly elliptically polarized even 
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for a linearly polarized incident beam; the ellipticity is 
of order Q ff'//~ and is due to the imaginary part of the 
coefficient at J/o,,. The polarized incident beam (with the 
polarization different from o or n) gives a slightly 
depolarized reflected beam [ 1 -- P is of order (Q W/#) 2 
or (Q l'V/ct)2]. 

For the transmitted beam, within the accuracy of the 
terms (Q W/u) 2 and (Q if,/#)2 one can obtain 

jr,,,, : jioa exp I - (U + QW)L/yo], 

J~,, : J~,, exp l-(/~ + C z QW)L/?~ol, (23) 

jto,, = J / , , exp  I - I #  + (1 + C2)QW/2 

- i(1 - C2)Qff'/2]L/yo} 

(there is no depolarization in this approximation). It 
follows from (23) that the ellipticity of the transmitted 
beam, unlike that of the reflected beam, may be large 
even for the linearly polarized incident beam if 
( 1 - C 2 ) Q l g " L / y o  ~ _ 1. 

where st = [C 2 W 2 - (1 - C 2 )  2 if 'V4] °'5. From (25) it 
follows that the diffracted beam may be strongly and 
even completely depolarized. The polarization 
dependences obtained from (25) are given in Fig. l(b). 
From (25) it follows also that all polarization 
characteristics depend on the plate thickness in an 
oscillatory way if the departure angle from the Bragg 
law is large [so that (1 - C2)ff z > 2CW]. Note that for 
a linearly polarized incident beam (Im J~,, = 0) the 
diffracted beam remains linearly polarized, but only 
partially. 

For the transmitted beam the results are similar to 
those for a diffracted one: 

j~ = j io  cosh(OWL/~o)expl_(~ + aW)L/yo] ' 

j r =  j~,, cosh(CZQWL/~o) exp[_~  + CZQW)L/7o], 

jr,,,, = j~,,[cosh(aaL/?o ) 

+ i(1 - C 2) if" sinh (QaL/?o)/2a ] 

× e x p { - [ p  + (1 + CZ)QW/2IL/7o}. (26) 

The Laue case 

In the asymmetrical Laue case (I)'o - -  ~'r l l ,  t't >~ Q ff') the 
results are similar to the Bragg case. For example, the 
expressions for the diffracted beam are 

J~o = Jgo Q W y 0 { e x p [ - ~  + QW)L/yol 

- e x p l - ( #  + QW)L/yHI} 

x [(Y0- )'n)(g + QW)]-' ,  

jr ,  =j~,,  C 2 QWyo{exp[_(,  u + C 2 QW)L/)'o ] 

--exp[--(/z + C z QWL/ya]} 

x [ ( ) '0-  7.)(/ t  + C 2 QW)]-' ,  (24) 

Jr,, = S~,,, CQWyo {exp[-la,,,, L/7o] 

-- exp [--/~*,, L/?u]} [yo/ t*  -- Yn/~o,,]-', 

where •o,, = # + (1 + C2)QW/2 - i(1 - C2)Qff,'/2. 
From (24) it follows that depolarization is small as in 
the Bragg ease, but the variation of the polarization 
may be large and oscillates with the plate thickness. The 
angular dependences of polarization parameters, 
described by (24), are given in Fig. 1 (a). 

The above analysis of polarization properties was 
carried out with the assumption of strong absorption 
(la ~> QW, IJ ~> Qff'). In the symmetrical Laue case 
(Y0 = ?H) the polarization properties do not depend on 
absorption. For  example, the expressions for the 
diffracted beam are given by 

J~o = J~,, sinh (QWL/yo) exp [ - ( #  + QW)L/7o] , 

J; , ,  = J~ ,  sinh (C 2 aWL/yo) 

x e x p [ - ( #  + C z QW)L/yo], (25) 

Jr,,,, J~, (CW/a)  sinh (QaL/y o) 

x exp{-[~t + (1 + C2)QW/2]L/yo}, 

Unlike the diffracted beam, transformation of linear 
polarization into elliptic and vice versa is possible for 
the transmitted beam (owing to the imaginary part of 

t the coefficient in the equation for Ja,,)" 

Integral properties 

The above expressions for the polarization tensors of 
diffracted and transmitted beams describe the 

p 

1 - 100 Ii ~ ..,.--'%. x 

80o-I 

60o-I 
0.5- 

. 40o-t 

20o-I 

0 i i i , ! , , i 

(a) 

b 
1 

0.5 

0 

- 0 . 5  

- 1  

P ~t b 
l lO0 l 

80°q O. 5 

60°d ? 0 
0 '5 40o~ 

20 o.~ O. 5 

0 ~ --1 
--5 --'4 --'3 --~2 21 () 1 ½ 3 

(b) ~/~,, 

Fig. 1. The angular dependence of the polarization characteristics 
of the diffracted beam. P the degree of polarization; b the axial 
ratio of the polarization ellipse; ~0 the angle between the long axis 
of the polarization ellipse and the a direction; e the angular 
departure from the Bragg law. The incident beam is linearly 
t~olarized at 45 ° to the a direction. W ( e )  = WL(e)  [see equation 
(8a)l; L = 2 . 5 L  e = 5nem/Q.  (a) Asymmetrical Laue case [from 
equations (24)]; 70 = 1, Yn = cos 20 n = 0.5. (b) Symmetrical 
Laue case [from equations (25)]; Y0 = 7n cos O a = V/3/2. 
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differential (over the angle) polarization properties. 
These expressions are applicable in the case of a narrow 
incident beam with angular width much less than the 
width of mosaic distribution. To obtain the polarization 
characteristics in the case of a divergent beam, these 
expressions should be averaged over the angles of 
incidence. In the general case, this averaging can be 
performed using numerical integration, but in special 
cases analytical expressions can be obtained which are 
also useful for the general case analysis. For example, 
in the asymmetrical Laue case one gets from (24) 
(assuming that the block distribution is Lorentzian and 
g >> Q W,  lu >> Q f f ' )  the following equations for the 
elements of the integral polarization tensor of the 
diffracted beam: 

Jik QYo Cik 
fl i~ = f J ~, d e = 

-o0 ( Y o -  Y . )  

x { I o ( C ~ k L / Y o L e )  e x p [ - ( / 2  + C~ffLe)L/)Po] 

--  I o ( C ~ k L / y .  Le) exp[ - (~  + C ~ / L ~ ) L / ~ . ] } ,  

(27) 

where I o ( x  ) is the modified Bessel function of zeroth 
order, Coo = C ' , ,  = 1 C,,,, = C',,,, = C 2, Co,, = C, C '  - 
(1 + C~) /2 ,  L e = 2teem~Q, L e is the secondary 
extinction length. For example, in the silicon crystal 
with em= 1', L e ~_ 200•m for the Cu Ka 220 reflection 
[the primary extinction length is ~ 15 #m for this case 
(Pinsker, 1978)]. It follows from (27) that the diffracted 
beam is partially depolarized. In the case of a linearly 
polarized incident beam the diffracted one is partially 
polarized linearly. The variations of the polarization 
characteristic with plate thickness, which follow from 
(27), are shown in Fig. 2. 

It can be shown that the variations of the integral 
characteristics with plate thickness are rather strongly 
dependent on the distribution function W(e) and 
diffraction geometry, but the qualitative conclusions 
obtained from (27) are quite general. For example, the 

1 

80 ° 

0.5 6 0 °  

40 ° 

20 ° 

0 
0 5 10 

I.IL~ 

Fig. 2. The integral (over the angle of  incidence) polarization 
characteristics of  the diffracted beam v e r s u s  the crystal thick- 
ness. Asymmetr ical  Laue case: 70 = 1, )'H = cos 2 0  s = 0.5;  
W(e) = WL(c). L e = 2nt,,/Q. The incident beam is linearly polar- 
ized at 45 ° to the a direction. 

depolarization of divergent beams is larger than that of 
narrow beams. This additional depolarization arises 
owing to the dependence of the beam polarization upon 
small angular departures from Bragg's law. Note that 
analogous depolarization of narrow beams may occur if 
the characteristics of a mosaic crystal (for example, the 
mean direction of blocks orientation) vary from point to 
point. 

Conclusion 

The results presented here reveal qualitative differences 
of X-ray polarization properties in mosaic crystals as 
compared with perfect ones. The most natural and 
pronounced difference is the depolarization of X-ray 
beams in mosaic crystals. (This depolarization occurs 
only if the polarization of the incident beam differs from 
a o r  7~.) 

The mosaic crystals, as are the perfect ones, are 
birefringent. The birefringence and the secondary 
extinction lead to the transformation of X-ray 
polarization. Being determined by the function W'(e), 
the birefringence decreases rather slowly (as l/e) for 
large deviations e of the incident beam from the Bragg 
condition. Therefore, the birefringence for the direct 
beam is significant even far from the Bragg angle where 
the intensity of the diffracted beam is practically 
negligible. 

Thus, there are rather complicated and informative 
dependences of the X-ray polarization properties on the 
parameters of mosaic crystals. In particular, the 
measurements of polarization characteristics as a 
function of departure from Bragg's law give us a way to 
determine simultaneously both the distribution function 
W(e) and the related function ff'(e). The latter gives a 
way to check on the self-consistency of the measure- 
ments by means of the dispersion relation (5). 

Polarization dependences discussed above have been 
experimentally examined for perfect crystals 
(Mikhajljuk et al.,  1977; Cohen & Kuriyama, 1978; 
Hart, 1978). The results of corresponding measure- 
ments in mosaic crystals are not available. The 
measurements in mosaic crystals could be performed in 
the ways similar to those realized by Mikhajljuk et al. ,  
Cohen & Kuriyama and Hart. The other promising 
way is the application of synchrotron radiation which 
is naturally polarized (Codling, 1973; Yakimenko, 
1974). 

In the present treatment it is assumed that Fn F_n is 
real. In general, FH F_n is a complex quantity and its 
imaginary part accounts for Borrmann absorption. The 
Borrmann effect in mosaic crystals will be discussed 
elsewhere. 

In conclusion it should be noted that equations for 
polarization tensors may be useful for the description of 
diffraction of other types of radiation in mosaic 
crystals, for example neutrons and M6ssbauer radiation 
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in magnetically ordered crystals and light in cholesteric 
liquid crystals (Dmitrienko & Belyakov, 1977). 
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Abstract 1. Introduction 

The direct-analysis formalism of Kurki-Suonio [e.g. Isr. 
J. Chem. (1977), 16, Nos. 2-3, 115-123, 132-136] is 
modified to apply to the calculation of nuclear 
distributional moments (xay"z~), which are linear 
combinations of the multipole moments (rkytmp). They 
are integrated from the radial coefficients of the 
corresponding multipole terms through Gaussian and 
difference series procedures. An application to the 
thermal neutron diffraction structure factors of 
Merisalo & Larsen [Acta Cryst. (1977), A33, 351-354] 
on zinc indicates that the moment (x  2) agrees with the 
anharmonic result of Merisalo & Larsen. (z z) does 
not show discrepancy with the value based on har- 
monic assumption. The existence of the third-order 
component in the nuclear smearing function and, due 
to this, anharmonicity of thermal motion is well 
established, but the magnitude o f ( x  3) is not accurately 
defined on the basis of the present data. The ratios of 
the fourth and second moments do not reveal deviation 
from harmonic thermal smearing. 

* Part of the doctoral thesis of Aino Vahvaselk/4 (1978). Report 
Series in Physics, HU-P-DI0, University of Helsinki, Department 
of Physics, Helsinki, Finland. 

0567-7394/80/061050-08501.00 

The study of nuclear distributional moments by direct 
analysis in this work is intended to deal with deform- 
ation of harmonic nuclear smearing in hexagonal 
close-packed zinc. The non-centrosymmetric positions 
of the Zn atoms offer a possibility to study anharmon- 
icity beyond merely centrosymmetric contributions. 
The direct-analysis formalism applied has been 
developed from the principles in studies concerning 
electronic charge and nuclear density distributions 
presented by Kurki-Suonio and his collaborators (e.g. 
Kurki-Suonio & Meisalo, 1967; Kurki-Suonio & 
Ruuskanen, 1971 ; Kurki-Suonio, Merisalo, Vahvaselk/i 
& Larsen, 1976). 

Merisalo & Larsen (1977) (hereafter M & L) have 
recently performed elastic neutron scattering measure- 
ments of the structure factors of Zn in order to study 
anharmonicity of lattice vibrations by a parameter- 
fitting procedure. The insufficiency of a harmonic 
formalism to explain thermal vibrations in crystals has 
caused vivid interest to focus on anharmonicity. This 
phenomenon seems to be amenable to study by several 
different methods as summarized by Willis & Pryor 
(1975), and indicated by the studies of Whiteley, Moss 
& Barnea (1978); Merisalo, J~irvinen & Kurittu (1978); 
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